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Abstract
Human motion capture involves collecting data on human
movement using sensors and converting it into digital rep-
resentations. This technology is widely used in fields like
film production, video game development, sports analysis,
and virtual reality. Traditional methods rely on dedicated
sensor systems such as motion capture devices, RGB cam-
eras, LiDAR, and IMUs. However, these approaches, whether
used individually or in simple combinations, face limitations
in flexibility and real-world applicability.To overcome these
challenges, this project focuses on multimodal data fusion
using pre-trained models, particularly those developed for
image-based feature extraction. By extracting features from
modalities like images and point clouds, and then fusing these
features, the aim is to improve the accuracy and robustness of
motion capture systems. Experimental validation will be con-
ducted on multiple datasets to assess the performance of the
proposed approach.This study seeks to develop a more flexi-
ble and reliable method for human motion capture, addressing
the limitations of traditional systems and better meeting the
demands of practical applications.

Introduction
This project aims to address the limitations of traditional
human motion capture systems by developing a multi-
modal motion capture algorithm based on pre-trained mod-
els. Originally utilized in film and animation, human motion
capture technology has broadened its applications to include
sports analysis and medical rehabilitation due to its ability
to digitally record and store human movements. However,
conventional systems, such as optical and inertial motion
capture methods, encounter significant drawbacks, including
high costs, complicated setups, and limited real-time appli-
cability. Furthermore, these systems often require subjects
to wear specialized equipment, which can interfere with the
naturalness of their movements.

With rapid advancements in deep learning and the emer-
gence of powerful pre-trained models, there is now an op-
portunity to create more flexible and efficient motion capture
systems that do not depend on intricate sensor configurations
or optical markers. This transition could lower system costs,
simplify setups, and broaden the range of scenarios suitable
for motion capture.
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The motivation behind this research stems from the grow-
ing demand across various industries for more robust, flex-
ible, and cost-effective motion capture solutions. While tra-
ditional methods perform well in controlled settings, they
struggle to adapt to real-world environments where issues
such as occlusion, diverse surroundings, and the interaction
between the human body and the environment complicate
the capture process. By leveraging pre-trained models for
feature extraction, this project seeks to explore how mul-
timodal data fusion—incorporating both image and point
cloud data—can effectively tackle these challenges.

Ultimately, we will rigorously test and refine the proposed
model using established datasets, aiming to enhance accu-
racy, robustness, and adaptability in human motion capture
across various applications.

Related work
Traditional Human Motion Capture
Traditional motion capture primarily includes optical and in-
ertial systems. Optical systems use motion capture suits with
optical markers and multiple infrared cameras to estimate
human posture by tracking the markers. Inertial systems
equip subjects with inertial measurement units (IMUs) to
collect movement data. Examples include Optitrack and Mo-
tion Analysis for optical systems, and Xsens and Noitom for
inertial systems. However, optical systems require complex
setups and extensive data processing, leading to high costs.
Both systems also necessitate wearing specialized equip-
ment, which can impact the authenticity and range of mo-
tion.

Single-modality Human Motion Capture
In contrast, image-based motion capture methods do not
require markers for calibration, nor do they require com-
plex post-processing, making them more cost-effective and
simpler to use, thus gaining wider research and applica-
tion. HMR(Kanazawa et al. 2018) uses a parameterized
SMPL model to describe the human body, minimizing the
re-projection error of key points. It uses a large three-
dimensional human motion dataset to verify the authentic-
ity of the generated human motion, i.e., the authenticity
of the model-generated posture parameters. Unlike HMR,
VIBE(Kocabas, Athanasiou, and Black 2020) focuses on



Figure 1: The overall architecture of the Multi-modal Fusion Human Pose Estimation(MFHPE)

motion capture from RGB videos. It utilizes existing large-
scale motion capture datasets (such as AMASS(Mahmood
et al. 2019)) and two-dimensional keypoint annotations. Ad-
ditionally, VIBE includes an adversarial learning framework
based on self-attention mechanisms to distinguish between
real human motion and motion generated by VIBE. Hu-
MoR(Rempe et al. 2021) is a three-dimensional human mo-
tion model based on RGBD images, used for robust estima-
tion of action sequences and body shape. Despite substantial
progress in estimating three-dimensional human motion and
shape through dynamic observation, recalculating a reason-
able posture sequence in the presence of noise and occlusion
remains a challenge. Therefore, HuMoR proposes a gener-
ative model in the form of a conditional variational autoen-
coder, which learns the distribution of posture changes at
each step in the motion sequence.

Multimodal Human Motion Capture

Single-modality data has significant limitations, and mul-
timodal work is underway. TotalCapture(Joo, Simon, and
Sheikh 2018) collects human body posture using multi-view
cameras and IMUs in a studio setting. 3DPW(Von Mar-
card et al. 2018) records pedestrian postures in urban envi-
ronments through IMUs and handheld cameras. PedX(Kim
et al. 2019) documents pedestrian postures using stereo
images and LiDAR point clouds. FusionPose(Cong et al.
2023) reconstructs human posture using RGB and LiDAR
body point clouds. LIP(Ren et al. 2023) reconstructs human
posture using sparse IMUs and LiDAR. In addition to us-
ing monocular cameras and IMUs, LiDARHuman26M(Li
et al. 2022), HSC4D(Dai et al. 2022), SLOPER4D(Dai et al.
2023), and CIMI4D(Yan et al. 2023) collect human posture
information through static monocular LiDAR, body-carried
LiDAR, head-mounted LiDAR, and LiDAR, respectively.
ImmFusion(Chen et al. 2023) reconstructs human posture
using RGB cameras and millimeter wave radar point clouds.

Its algorithmic framework, as shown in Figure 1, includes
feature extraction, multimodal data fusion, and human mesh
recovery. The feature extraction part uses a pre-trained HR-
Net network to extract image features, and PointNet++ is
used for point cloud feature extraction. During multimodal
data fusion, a human template mesh is incorporated, fol-
lowed by the application of self-attention layers and feed-
forward network layers, and finally, a graph convolutional
neural network module is used to predict a rough 3D human
mesh.

Pre-trained models
Pre-trained models are neural network models that have
been trained on large-scale datasets, containing a vast num-
ber of parameters that can fully learn the characteristics of
the input data. The main idea behind pre-trained models is
to leverage massive datasets and computational resources to
pre-train models in data-rich environments for subsequent
fine-tuning or transfer learning tasks.

Pre-trained models can take various neural network archi-
tectures, including Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Transformers.
These network structures are typically deep and highly pa-
rameterized, capable of learning rich feature representations.

Proposed Solution
The overall architecture of the Multi-modal Fusion Human
Pose Estimation(MFHPE) algorithm based on image pre-
trained models is shown in Figure 1. It mainly consists of
three modules: the feature extraction module, the multi-
modal feature fusion module, and the human mesh recov-
ery module. The feature extraction module is responsible
for extracting features from each frame of images and point
clouds, returning the respective feature encoding vectors.
Pre-trained models are utilized for image feature extraction.
The multi-modal feature fusion module uses the features of



the same frame extracted by the feature extraction module
from images and point clouds. The human mesh recovery
module, which includes two algorithm branches. The first
branch regresses to obtain the vertex coordinates of the hu-
man mesh, and the second branch predicts the joint rotations
in the SMPL parametric human model. By constraining the
error between the predicted and ground-truth rotation matri-
ces, this branch better guides the reconstruction of the hu-
man mesh.

Feature extraction
The input to the feature extraction module consists of cor-
responding images and point clouds from the same frame.
The module includes two feature extractors: Eim and Epc ,
which extract features from images and point clouds, respec-
tively. The image feature extractor Eim utilizes pre-trained
models whose network parameters do not require further
training. In subsequent experiments, DINOv2, HRNet, and
ResNet were used as pre-trained models. The point cloud
feature extractor Epc employs the PointNet++ model, whose
parameters require training. The output of the feature extrac-
tion module includes Image Features ∈Rbatch size×1024 and
Point Cloud Features ∈ Rbatch size×1024, representing the
fine-grained features extracted from the images and point
clouds. These features capture the information of the cor-
responding frame’s image and point cloud data. For image
feature extraction, the process involves loading a pre-trained
model and performing on-the-fly feature inference for each
image before further operations. However, this approach re-
quires repeating the inference process during every training
session, resulting in high non-reusability and slower train-
ing speeds due to the inference overhead. Therefore, the ap-
proach was improved by pre-inferring the image features
and saving the feature vectors as npy files, which can be
loaded as needed during training. In this thesis experiment,
DINOv2, HRNet, and ResNet were used to extract image
features in advance. The extracted features represent an ab-
stract expression of the information describing each image.
The features extracted by different pre-trained models are
stored in separate file paths.

Multi-modal feature fusion
This module first concatenates the two feature vectors us-
ing the concatenate operation and then feeds them into the
Transformer(Vaswani 2017) module ϕT for feature fusion,
as shown in the formula(1).

Fused Feature = ϕT (Image Feature,
Point Cloud Feature)

(1)

The Transformer module includes multi-head attention,
feedforward networks, residual connections, and normaliza-
tion layers. Multi-head attention enables learning diverse
feature representations by combining results from different
attention heads. The feedforward network enhances feature
mapping and representation. Residual connections and nor-
malization layers after each attention and feedforward mod-
ule address gradient issues and accelerate training. The mod-
ule’s output is the Fused Feature ∈ Rbatch size×1024, repre-

senting the feature vectors obtained by fusing the image and
point cloud features.

Human mesh recovery
The first branch attaches the human template mesh vertices
to the feature vectors, as shown in formula(2).

F ′ = concat(JTemplate, V Template, F ) (2)

Here, F represents the Fused Feature, F’ represents the fea-
ture vector after the concatenation operation, JTemplate ∈
R24×3,and V Template ∈ R431×3 . These are synthesized
from the SMPL model with pose and shape parameters set
to zero and obtained through two down-sampling opera-
tions. Concat refers to the concatenation operation. The con-
catenated features are then sequentially fed into the Atten-
tion+MLP network ϕAM (with a structure similar to a Trans-
former) and a Graph Convolutional Network (GCN). The
GCN represents the human body joints as a graph structure,
enabling regression of the human body mesh vertex coordi-
nates, as shown in formula(3).

F ′′ = GCN(ϕAM (F ′)) (3)

After that, we obtain a coarse set of human body mesh vertex
coordinates V ∈ Rbatch size×455×3 and joint position coor-
dinates J ∈ Rbatch size×24×3 are obtained. The coarse ver-
tex coordinates are then processed through two up-sampling
networks to produce the predicted full human body mesh
vertex coordinates V ∈ Rbatch size×6890×3. The second
branch directly combines the predicted human joint coor-
dinates with the feature vectors and uses a RotMatrix Re-
gressor to jointly predict the human joint rotation matrices,
as shown in formula (4).

R = RotMatrix(J, Upsample(F ′′)) (4)

The predicted rotation matrix R ∈ Rbatch size×24×3×3. The
loss between the predicted rotation matrix and the ground
truth is also included in the total loss function to guide the
synthesis of the final human mesh. The RotMatrix Regressor
mainly consists of a Graph Convolutional Network (GCN)
structure module. Its input is the concatenated human joint
coordinates and the multimodal fused feature vectors, and
its output is a compressed feature representing the rotation
vector parameters. With the joint coordinates and vertex co-
ordinates of the human mesh, the SMPL human body para-
metric model can be used to render the 3D human mesh and
visualize it.

Experiments
Experimental Setup
We evaluate the performance of our proposed Multimodal
Fusion for Human Pose Estimation (MFHPE) framework
on two publicly available datasets: LiDARHuman26M and
RELI11D. These datasets provide multimodal data, includ-
ing RGB images and LiDAR point clouds, along with
ground-truth human pose annotations.



Implementation Details
The MFHPE framework is implemented using PyTorch
1.11.0, and trained on a system equipped with an Intel
Xeon Silver 4216 CPU, 512GB of RAM, and an NVIDIA
GeForce RTX 3090 GPU with 24GB memory, running
Ubuntu 18.04.6. Training is conducted with a batch size of
48 over 50 epochs, using the Adam optimizer and an initial
learning rate of 1e-4. A dynamic learning rate adjustment
strategy is employed to progressively decrease the learn-
ing rate as training advances, ensuring stable convergence.
Key metrics, including joint position loss, mesh vertex loss,
and joint rotation loss, are logged to TensorBoard. The best-
performing model on the validation set is saved, with check-
points stored every 10 epochs to facilitate model evaluation
and resumption. Training on the LiDARHuman26M dataset
requires 7–10 days on the RTX 3090 GPU, highlighting the
need for optimization to reduce computational costs.

Pre-trained Models
The feature extraction module in MFHPE leverages three
pre-trained models:

• DINOv2: A self-supervised model that captures robust
visual features without labeled data.

• HRNet: A high-resolution network that maintains de-
tailed representations for pose estimation.

• ResNet: A widely-used residual learning framework for
image feature extraction.

Evaluation Metrics
We employ the following metrics to quantify the perfor-
mance of our framework:

• Mean Per Vertex Error (MPVE): Measures the average
Euclidean distance between predicted and ground-truth
mesh vertices.

• Mean Per Joint Position Error (MPJPE): Calculates the
Euclidean distance between predicted and ground-truth
joint positions.

• Procrustes Aligned MPJPE (PA-MPJPE): Evaluates
MPJPE after rigid alignment to account for translation
and rotation errors.

Quantitative Results
Results on LiDARHuman26M The quantitative results
on the LiDARHuman26M dataset are presented in table 1.
Among the tested pre-trained models, ResNet achieves the
best performance with an MPJPE of 114.80 mm and a PA-
MPJPE of 42.20 mm, outperforming both DINOv2 and HR-
Net. This demonstrates the effectiveness of ResNet in ex-
tracting image features for human pose estimation.

Results on RELI11D Table 2 summarizes the perfor-
mance of MFHPE on the RELI11D dataset. While ResNet
achieves the lowest MPVE of 213.77 mm, DINOv2 excels
in MPJPE and PA-MPJPE metrics, with values of 85.22 mm
and 51.90 mm, respectively. This highlights the robustness
of DINOv2 in scenarios with sparse LiDAR data.

Table 1: Quantitative Comparison Results of Testing Li-
DARHuman26M

Model MPVE MPJPE PA-MPJPE
DINOv2 247.15 134.02 50.77
HRNet 255.17 126.05 48.01
ResNet 249.47 114.80 42.20

Table 2: Quantitative Comparison Results of Testing
RELI11D

Model MPVE MPJPE PA-MPJPE
DINOv2 359.99 85.22 51.90
HRNet 235.74 135.20 65.81
ResNet 213.77 138.95 63.86

Figure 2 illustrates the loss curves during training. The
steady decrease in training loss indicates that the model is
converging effectively.

Figure 2: Curve of Loss Value Changes During Model Train-
ing

Figure 3 and Figure 4 show the input sequences for Li-
DARHuman26M and RELI11D, including both RGB im-
ages and LiDAR point clouds. These visualizations provide
insight into the data used by the model for pose estimation.

Ablation Studies
In this section, we present ablation studies to evaluate the
impact of the RotMatrix regressor. Figure 5 and table 3
present qualitative results of the ablation experiment, com-
paring human mesh recovery with and without the RotMa-
trix branch. The addition of the RotMatrix regressor im-
proves joint rotations and overall pose estimation.



Figure 3: Partial Results Visualization on the LiDARHu-
man26M Test Set

Figure 4: Partial Results Visualization on the RELI11D Test
Set

Figure 5: Ablation Study Results – Visual Comparison The
first two rows show the inputs (RGB images and LiDAR
point clouds). The third row displays results without the Rot-
Matrix regressor, while the fourth row shows results with it.
Red circles highlight anatomically incorrect poses, under-
scoring the importance of the RotMatrix regressor for real-
istic human motion capture.

Table 3: Quantitative Ablation Study Results

Configuration MPVE MPJPE PA-MPJPE
With RotMatrix Regressor 134.02 50.77 247.15
Without RotMatrix Regressor 135.50 51.33 305.00

The inclusion of the RotMatrix regressor leads to a 19.0%
reduction in MPVE, highlighting its importance in improv-
ing the accuracy of joint rotations and enhancing pose esti-
mation performance.

Discussion
The experimental results validate the effectiveness of the
MFHPE framework.
1. Model Comparison: ResNet consistently achieves better

performance on LiDARHuman26M, while DINOv2 ex-
cels on RELI11D in challenging outdoor scenarios.

2. Ablation Insights: The RotMatrix regressor plays a cru-
cial role in refining joint rotation predictions, with its in-
clusion leading to a 19.0% improvement in MPVE on
LiDARHuman26M.

3. Dataset Observations: The variation in performance
across datasets underscores the importance of selecting
suitable pre-trained models for specific data characteris-
tics.

Conclusion
Summary
This paper introduces MFHPE, a novel multimodal fusion
approach for human pose estimation, leveraging pre-trained
models to extract image features and fuse them with point
cloud data. The framework utilizes DINOv2, HRNet, and
ResNet for feature extraction and is tested on the LiDARHu-
man26M and RELI11D datasets. Results show that DINOv2
and ResNet perform best in terms of MPVE, MPJPE, and
PA-MPJPE.

The human mesh recovery module features a dual-branch
structure with a RotMatrix regressor, which improves the
capture of realistic human motion. Ablation studies demon-
strate that the RotMatrix regressor enhances the model’s ac-
curacy in joint rotations and overall pose estimation.

Improvements and Future Work
Although the proposed framework shows promising results,
several improvements are needed:

Training Efficiency: Training on the LiDARHuman26M
dataset takes 7–10 days on a NVIDIA GeForce RTX 3090
GPU, and further training could lead to better convergence.
Future work will explore optimizing training strategies to
reduce computational costs and improve efficiency.

Frame Consistency: Currently, the model processes each
frame independently, leading to discontinuous motion. In-
corporating temporal models or smoothness constraints be-
tween frames could address this issue.

SMPL Model Limitations: The use of the SMPL model
for 3D visualization limits the capture of fine-grained mo-
tions (e.g., hand gestures). Replacing SMPL with SMPLX,
which includes detailed hand and facial expression parame-
ters, would enhance the model’s performance.
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